论文标题

手动相互作用图像生成

Hand-Object Interaction Image Generation

论文作者

Hu, Hezhen, Wang, Weilun, Zhou, Wengang, Li, Houqiang

论文摘要

在这项工作中,我们致力于一项新任务,即手动相互作用图像生成,该任务旨在有条件地在给定的手,对象及其交互状态下有条件地生成手动图像。在许多潜在的应用程序场景(例如AR/VR游戏和在线购物等)中,这项任务是具有挑战性和值得研究的。为了解决此问题,我们提出了一个新颖的Hogan框架,该框架利用了表现力的模型感知的手动对象表示,并利用其固有的拓扑来构建统一的表面空间。在这个空间中,我们明确考虑相互作用过程中复杂的自我和相互阻塞。在最终图像合成过程中,我们考虑了手和物体的不同特征,并以分裂和综合的方式生成目标图像。为了进行评估,我们构建了一个综合协议,以访问生成图像的保真度和结构保存。在两个大规模数据集(即HO3DV3和DexyCB)上进行了广泛的实验,证明了我们框架的有效性和优越性,既有定量和定性。项目页面可在https://play-with-hoi-generation.github.io/上找到。

In this work, we are dedicated to a new task, i.e., hand-object interaction image generation, which aims to conditionally generate the hand-object image under the given hand, object and their interaction status. This task is challenging and research-worthy in many potential application scenarios, such as AR/VR games and online shopping, etc. To address this problem, we propose a novel HOGAN framework, which utilizes the expressive model-aware hand-object representation and leverages its inherent topology to build the unified surface space. In this space, we explicitly consider the complex self- and mutual occlusion during interaction. During final image synthesis, we consider different characteristics of hand and object and generate the target image in a split-and-combine manner. For evaluation, we build a comprehensive protocol to access both the fidelity and structure preservation of the generated image. Extensive experiments on two large-scale datasets, i.e., HO3Dv3 and DexYCB, demonstrate the effectiveness and superiority of our framework both quantitatively and qualitatively. The project page is available at https://play-with-hoi-generation.github.io/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源