论文标题
在3+1维度中具有渐近自由的可解决量子场理论
A solvable quantum field theory with asymptotic freedom in 3+1 dimensions
论文作者
论文摘要
最近,AI,Bender和Sarkar提供了有关如何获得$ \ Mathcal {pt} $ - 对称野外理论的处方,这是由于Hermitian田间理论的分析延续。我对具有3+1个维度的四分之一相互作用的无质量(临界)O(N)模型进行了这种分析延续。在大的n个限制中,该理论是可以解决的,并且在紫外线中具有负$β$功能,并且在红外线中具有稳定的结合状态。耦合以$λ_c$的比例分歧,但可以继续进入远红外线。在有限温度下,该理论展示了两个阶段,该阶段在$ t_c \simeqλ_c/\ sqrt {e} $附近被二阶相变隔开。
Recently, Ai, Bender and Sarkar gave a prescription on how to obtain $\mathcal{PT}$-symmetric field theory results from an analytic continuation of Hermitian field theories. I perform this analytic continuation for the massless (critical) O(N) model with quartic interaction in 3+1 dimensions. In the large N limit, this theory is exactly solvable, and has negative $β$-function in the ultraviolet, and a stable bound state in the infrared. The coupling diverges at a scale $Λ_c$, but can be continued into the far infrared. At finite temperature, the theory exhibits two phases separated by a second-order phase transition near $T_c\simeq Λ_c/\sqrt{e}$.