论文标题
语言学习项目的控制语言生成
Controlled Language Generation for Language Learning Items
论文作者
论文摘要
这项工作旨在采用自然语言生成(NLG)来快速生成英语语言学习应用程序:这既需要能够产生流利,高质量英语的语言模型,并控制一代人的输出以符合相关项目的要求。我们为这项任务进行了深思熟虑的模型,开发了针对语言学习中相关因素的项目的新方法:不同的能力水平和论证结构的不同句子来测试语法。人类评估表明,所有模型(4.4及4分)的语法得分很高,而高级能力模型的基线比长度更高(24%)和复杂性(9%)。我们的结果表明,我们可以在增加额外的控制权的同时取得强大的性能,以确保为个人用户提供多样化的量身定制内容。
This work aims to employ natural language generation (NLG) to rapidly generate items for English language learning applications: this requires both language models capable of generating fluent, high-quality English, and to control the output of the generation to match the requirements of the relevant items. We experiment with deep pretrained models for this task, developing novel methods for controlling items for factors relevant in language learning: diverse sentences for different proficiency levels and argument structure to test grammar. Human evaluation demonstrates high grammatically scores for all models (3.4 and above out of 4), and higher length (24%) and complexity (9%) over the baseline for the advanced proficiency model. Our results show that we can achieve strong performance while adding additional control to ensure diverse, tailored content for individual users.