论文标题
金茨堡 - 兰德热流中的涡流产生
Generation of vortices in the Ginzburg-Landau heat flow
论文作者
论文摘要
我们考虑了二维平坦圆环上的金茨堡 - 兰道热流,从具有有限数量的非排定零的初始数据开始 - 但可能非常高的初始能量。我们表明,最初的零是保守的,流动迅速进入对数能量状态,伯特埃尔,奥兰迪和Smets的作品可以从中描述涡流的演变。
We consider the Ginzburg-Landau heat flow on the two-dimensional flat torus, starting from an initial data with a finite number of nondegenerate zeros -- but possibly very high initial energy. We show that the initial zeros are conserved and the flow rapidly enters a logarithmic energy regime, from which the evolution of vortices can be described by the works of Bethuel, Orlandi and Smets.