论文标题

在沿二次超曲面的多项式Carleson操作员上

On Polynomial Carleson operators along quadratic hypersurfaces

论文作者

Anderson, Theresa C., Maldague, Dominique, Pierce, Lillian B., Yung, Po-Lam

论文摘要

我们证明,由$(y,q(y))\ subseteq \ mathbb {r}^{n+1} $定义的最大调制的奇异振荡性积分算子,用于任意非分数Quadratic form $ q $,以$ 1 $ n $ 1 $ n $ 1 $ <P < 2 $。该操作员采用ra型多项式的Carleson操作员的形式,其中最大调制阶段位于$ \ {p_2,\ ldots,p_d \} $的真实跨度,对于任何固定的真实价值p_j $ p_j $,$ j $ y y $ j $ y y y y y y y y y y y y y y $ j $ $ q(y)$。这项工作中开发的一般方法适用于任意签名的二次形式,而先前的工作仅考虑了特殊的正定情况$ q(y)= | y |^2 $。

We prove that a maximally modulated singular oscillatory integral operator along a hypersurface defined by $(y,Q(y))\subseteq \mathbb{R}^{n+1}$, for an arbitrary non-degenerate quadratic form $Q$, admits an a priori bound on $L^p$ for all $1<p<\infty$, for each $n \geq 2$. This operator takes the form of a polynomial Carleson operator of Radon-type, in which the maximally modulated phases lie in the real span of $\{p_2,\ldots,p_d\}$ for any set of fixed real-valued polynomials $p_j$ such that $p_j$ is homogeneous of degree $j$, and $p_2$ is not a multiple of $Q(y)$. The general method developed in this work applies to quadratic forms of arbitrary signature, while previous work considered only the special positive definite case $Q(y)=|y|^2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源