论文标题

量子序列:使用频谱排序改善数据模型对齐

Qubit seriation: Improving data-model alignment using spectral ordering

论文作者

Acharya, Atithi, Rudolph, Manuel, Chen, Jing, Miller, Jacob, Perdomo-Ortiz, Alejandro

论文摘要

随着量子和量子启发的机器学习的出现,调整学习模型的结构以匹配目标数据集的结构,这对于获得高性能至关重要。基于张量网络(TNS)的概率模型是从数据依赖性设计注意事项中受益的主要候选者,因为它们偏向于模型拓扑的局部相关性。在这项工作中,我们使用光谱图理论的方法来搜索适用于输入数据集结构的模型站点的最佳排列。我们的方法使用目标数据集中的成对共同信息估计值,以确保将密切相关的位与模型的拓扑彼此靠近。我们证明了此类预处理对概率建模任务的有效性,从而在各种数据集中基于基于矩阵产品状态(MP)的生成模型的性能进行了实质性改进。我们还展示了光谱嵌入是如何使用光谱图理论降低维度的技术来获得进一步见解对目标数据集结构的进一步见解的。

With the advent of quantum and quantum-inspired machine learning, adapting the structure of learning models to match the structure of target datasets has been shown to be crucial for obtaining high performance. Probabilistic models based on tensor networks (TNs) are prime candidates to benefit from data-dependent design considerations, owing to their bias towards correlations which are local with respect to the topology of the model. In this work, we use methods from spectral graph theory to search for optimal permutations of model sites which are adapted to the structure of an input dataset. Our method uses pairwise mutual information estimates from the target dataset to ensure that strongly correlated bits are placed closer to each other relative to the model's topology. We demonstrate the effectiveness of such preprocessing for probabilistic modeling tasks, finding substantial improvements in the performance of generative models based on matrix product states (MPS) across a variety of datasets. We also show how spectral embedding, a dimensionality reduction technique from spectral graph theory, can be used to gain further insights into the structure of datasets of interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源