论文标题

使用深卷积神经网络的魔术望远镜的性能

The performance of the MAGIC telescopes using deep convolutional neural networks with CTLearn

论文作者

Miener, T., Nieto, D., López-Coto, R., Contreras, J. L., Green, J. G., Green, D., Collaboration, E. Mariotti on behalf of the MAGIC

论文摘要

主要的大气伽玛成像Cherenkov(魔术)望远镜系统位于加那利岛的La Palma岛上,并检查了非常高的能量(VHE,几十GEV及以上)Gamma-ray Sky。魔术由两个成像大气Cherenkov望远镜(IACTS)组成,它们通过检测到淋浴中发出的Cherenkov光子来捕获来自大气中伽马射线和宇宙射线的吸收的空气阵雨图像。 IACTS对伽马射线源的敏感性主要取决于重建产生空气淋浴的主要粒子的特性(类型,能量和到达方向)的能力。用于淋浴重建的最先进的IACT管道基于淋浴图像的参数化,通过提取几何和立体特征以及机器学习算法(如随机森林或增强的决策树)。在这项贡献中,我们探讨了直接应用于摄像机的像素化图像的深度卷积神经网络,作为IACT全事件重建的一种有前途的方法,并使用CTREALN在观测数据上呈现该方法的性能,这是一种用于利用深度学习的IACT事件重建的软件包。

The Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescope system is located on the Canary Island of La Palma and inspects the very high-energy (VHE, few tens of GeV and above) gamma-ray sky. MAGIC consists of two imaging atmospheric Cherenkov telescopes (IACTs), which capture images of the air showers originating from the absorption of gamma rays and cosmic rays by the atmosphere, through the detection of Cherenkov photons emitted in the shower. The sensitivity of IACTs to gamma-ray sources is mainly determined by the ability to reconstruct the properties (type, energy, and arrival direction) of the primary particle generating the air shower. The state-of-the-art IACT pipeline for shower reconstruction is based on the parameterization of the shower images by extracting geometric and stereoscopic features and machine learning algorithms like random forest or boosted decision trees. In this contribution, we explore deep convolutional neural networks applied directly to the pixelized images of the camera as a promising method for IACT full-event reconstruction and present the performance of the method on observational data using CTLearn, a package for IACT event reconstruction that exploits deep learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源