论文标题

用于曲面几何建模的细分特征的插值

Interpolation of subdivision features for curved geometry modeling

论文作者

Jiménez-Ramos, Albert, Gargallo-Peiró, Abel, Roca, Xevi

论文摘要

我们提出了一种结节插值方法,以近似细分模型。主要应用是在没有间隙的情况下建模和表示弯曲的几何形状并保留所需的仿真意图。因此,我们设计了维护必要的尖锐特征并平滑所指示的技术。这种锐利的平滑建模能力处理模拟点,曲线和表面的非结构化配置。表面对应于确定锐角和曲线特征的初始线性三角剖分。该方法会自动提出尖锐特征的子集,以使用户修改以获取一个限制模型,以保留初始点。该模型通过初始网格的细分重建曲率,而不需要基础弯曲的几何模型。最后,在多项式程度和淋巴结分布的情况下,该方法生成了插值限制模型的零件多项式表示。我们显示了数值证据,表明这种近似自然与细分特征对齐,与多项式分布的多项式分布收敛到模型,并具有亚最佳的lebesgue常数。我们还采用了规定高阶体积网格的弯曲边界的方法。我们得出的结论是,我们的清晰平滑的建模能力会导致弯曲的几何表示,并增强了模拟意图的保存。

We present a nodal interpolation method to approximate a subdivision model. The main application is to model and represent curved geometry without gaps and preserving the required simulation intent. Accordingly, we devise the technique to maintain the necessary sharp features and smooth the indicated ones. This sharp-to-smooth modeling capability handles unstructured configurations of the simulation points, curves, and surfaces. The surfaces correspond to initial linear triangulations that determine the sharp point and curve features. The method automatically suggests a subset of sharp features to smooth which the user modifies to obtain a limit model preserving the initial points. This model reconstructs the curvature by subdivision of the initial mesh, with no need of an underlying curved geometry model. Finally, given a polynomial degree and a nodal distribution, the method generates a piece-wise polynomial representation interpolating the limit model. We show numerical evidence that this approximation, naturally aligned to the subdivision features, converges to the model geometrically with the polynomial degree for nodal distributions with sub-optimal Lebesgue constant. We also apply the method to prescribe the curved boundary of a high-order volume mesh. We conclude that our sharp-to-smooth modeling capability leads to curved geometry representations with enhanced preservation of the simulation intent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源