论文标题
联合神经结构和超参数搜索相关时间序列预测
Joint Neural Architecture and Hyperparameter Search for Correlated Time Series Forecasting
论文作者
论文摘要
网络物理系统中的传感器通常会捕获相互联系的过程,从而散发相关时间序列(CTS),该过程的预测可以实现重要应用。成功CTS预测的关键是揭示时间序列的时间动力学和时间序列之间的空间相关性。基于深度学习的解决方案在辨别这些方面时表现出令人印象深刻的表现。特别是,自动化的自动化CT预测是自动化的最佳深度学习体系结构的设计,可以实现超过手动方法实现的预测准确性。但是,自动化的CTS溶液仍处于起步阶段,并且只能找到预定义的超参数的最佳体系结构,并且缩放到大规模CTS。为了克服这些局限性,我们建议搜索,一个可扩展的框架,以自动设计有效的CTS预测模型。具体而言,我们将每个候选体系结构和随附的超参数编码为联合图表。我们介绍了有效的体系结构 - 播放式比较器(AHC),以对所有体系结构搭配组合对进行排名,然后我们进一步评估顶级对的对,以选择最终结果。六个基准数据集的广泛实验表明,搜索不仅可以消除手动努力,而且比手动设计和现有的自动设计的CTS模型具有更好的性能。此外,它显示出对大型CTS的出色可伸缩性。
Sensors in cyber-physical systems often capture interconnected processes and thus emit correlated time series (CTS), the forecasting of which enables important applications. The key to successful CTS forecasting is to uncover the temporal dynamics of time series and the spatial correlations among time series. Deep learning-based solutions exhibit impressive performance at discerning these aspects. In particular, automated CTS forecasting, where the design of an optimal deep learning architecture is automated, enables forecasting accuracy that surpasses what has been achieved by manual approaches. However, automated CTS solutions remain in their infancy and are only able to find optimal architectures for predefined hyperparameters and scale poorly to large-scale CTS. To overcome these limitations, we propose SEARCH, a joint, scalable framework, to automatically devise effective CTS forecasting models. Specifically, we encode each candidate architecture and accompanying hyperparameters into a joint graph representation. We introduce an efficient Architecture-Hyperparameter Comparator (AHC) to rank all architecture-hyperparameter pairs, and we then further evaluate the top-ranked pairs to select a final result. Extensive experiments on six benchmark datasets demonstrate that SEARCH not only eliminates manual efforts but also is capable of better performance than manually designed and existing automatically designed CTS models. In addition, it shows excellent scalability to large CTS.