论文标题

A3T:准确的意识到对抗训练

A3T: Accuracy Aware Adversarial Training

论文作者

Altinisik, Enes, Messaoud, Safa, Sencar, Husrev Taha, Chawla, Sanjay

论文摘要

从经验上证明,对抗性训练比标准培训更容易拟合。确切的根本原因仍然需要完全理解。在本文中,我们确定了与当前从错误分类样本中生成对抗样本的实践相关的过度拟合的原因。为了解决这个问题,我们提出了一种替代方法,该方法利用错误分类的样本来减轻过度拟合的问题。我们表明,我们的方法可以在各种计算机视觉,自然语言处理和表格任务上具有与最先进的对抗训练方法具有可比性的鲁棒性,同时具有更好的概括性。

Adversarial training has been empirically shown to be more prone to overfitting than standard training. The exact underlying reasons still need to be fully understood. In this paper, we identify one cause of overfitting related to current practices of generating adversarial samples from misclassified samples. To address this, we propose an alternative approach that leverages the misclassified samples to mitigate the overfitting problem. We show that our approach achieves better generalization while having comparable robustness to state-of-the-art adversarial training methods on a wide range of computer vision, natural language processing, and tabular tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源