论文标题
围绕邦迪和荣格的猜想的图表中的大周期的注释
A Note on Large Cycles in Graphs Around Conjectures of Bondy and Jung
论文作者
论文摘要
得出了两种新的循环(包括汉密尔顿和特殊案例的主导循环)的两个新的条件,得出了k连接的图(k = 1,2,...),这证明了邦迪(1980年)的著名猜想的真实性,可以显着改善给定假设所预期的结果。同样,为Jung(2001)提出的反向假设建立了两个新的下限(最长循环的长度)。
Two new sufficient conditions for generalized cycles (including Hamilton and dominating cycles as special cases) in an arbitrary k-connected graph (k=1,2,...) are derived, which prove the truth of Bondy's (1980) famous conjecture for some variants significantly improving the result expected by the given hypothesis. Similarly, two new lower bounds for the circumference (the length of a longest cycle) are established for the reverse hypothesis proposed by Jung (2001).