论文标题
通过干预措施线性因果分解
Linear Causal Disentanglement via Interventions
论文作者
论文摘要
因果分离寻求通过因果模型相互关联的潜在变量的数据来表示。如果潜在模型和从潜在变量到观测变量的转换都是唯一的,则表示表示形式。在本文中,我们研究了观察到的变量,这些变量是线性潜在因果模型的线性转化。干预措施的数据是可识别性的必要条件:如果一个潜在变量缺少干预措施,我们表明存在无法区分的不同模型。相反,我们表明对每个潜在变量进行单一干预足以识别性。我们的证明使用矩阵的RQ分解的概括,该矩阵的RQ分解取代了通常的正交和上三角条件,并根据基质行上的部分顺序取代类似物,并由潜在因果模型确定部分。我们通过一种因果分解方法来证实我们的理论结果,该方法可以准确地恢复潜在的因果模型。
Causal disentanglement seeks a representation of data involving latent variables that relate to one another via a causal model. A representation is identifiable if both the latent model and the transformation from latent to observed variables are unique. In this paper, we study observed variables that are a linear transformation of a linear latent causal model. Data from interventions are necessary for identifiability: if one latent variable is missing an intervention, we show that there exist distinct models that cannot be distinguished. Conversely, we show that a single intervention on each latent variable is sufficient for identifiability. Our proof uses a generalization of the RQ decomposition of a matrix that replaces the usual orthogonal and upper triangular conditions with analogues depending on a partial order on the rows of the matrix, with partial order determined by a latent causal model. We corroborate our theoretical results with a method for causal disentanglement that accurately recovers a latent causal model.