论文标题

具有固定角度的等缘线的宽度层次结构

The Lasserre hierarchy for equiangular lines with a fixed angle

论文作者

de Laat, David, Machado, Fabrício Caluza, Keizer, Willem de Muinck

论文摘要

我们计算了球形有限距离问题的套件层次结构的第二和第三层。在正交组的表示和一般线性组的表示中,不变性之间使用了连接,该组允许在高维度中进行计算。我们在尺寸$ n $的最大equargular线上给出了新的线性边界,并带有common Angle $ \arccosα$。这些是通过第二级给出的半标准编程的$ n $中的渐近分析获得的。

We compute the second and third levels of the Lasserre hierarchy for the spherical finite distance problem. A connection is used between invariants in representations of the orthogonal group and representations of the general linear group, which allows computations in high dimensions. We give new linear bounds on the maximum number of equiangular lines in dimension $n$ with common angle $\arccos α$. These are obtained through asymptotic analysis in $n$ of the semidefinite programming bound given by the second level.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源