论文标题
卡洛利亚形状标量为平面单位
Carrollian conformal scalar as flat-space singleton
论文作者
论文摘要
我们表明,在任何时空维度上,都可以将壳(电)保形卡罗利量标量解释为共形代数的单胎表示的平面限制。实际上,最近提出的Minkowski时空的高旋转代数等于相应模块上的庞加莱包围代数。该高旋转代数是进入Vasiliev方程的收缩,可以从共形代数的单例表示类似地构造。我们还表明,我们认为的庞加莱代数的较高旋转延伸是由(扩展)BMS代数的高旋转版本给出的保形Carrollian标量的所有对称性的子代数。
We show that, in any space-time dimension, the on-shell (electric) conformal Carrollian scalar can be interpreted as the flat-space limit of the singleton representation of the conformal algebra. In fact, a recently proposed higher-spin algebra for Minkowski spacetime amounts to the Poincaré enveloping algebra on the corresponding module. This higher-spin algebra is a contraction of that entering Vasiliev's equations, which can be constructed analogously from the singleton representation of the conformal algebra. We also show that the higher-spin extension of the Poincaré algebra we consider is a subalgebra of all symmetries of the conformal Carrollian scalar, given by a higher-spin version of the (extended) BMS algebra.