论文标题

流体动力学量表固定和高阶流体动力扩张

Hydrodynamic gauge fixing and higher order hydrodynamic expansion

论文作者

De Nardis, Jacopo, Doyon, Benjamin

论文摘要

流体动力学是在多体系统(量子或经典)中大规模行为的强大新兴理论。这是一个梯度系列的扩展,其中不同的空间衍生物顺序在不同的长度尺度上提供了有效的描述。我们在这里报告流体动力扩张中的第三阶或“分散”项的第一个一般推导。我们为相关的流体动力系数获得了完全通用的类似库博的表达式,并确定它们在量子积分模型中的表达式,以这种方式引入纯量子高阶术语到广义流体动力学中。我们强调了以扩散顺序固定流体动力学量规的重要性,我们声称这是平等时代的反转,而不是时间反转的不变性,这是爱因斯坦关系的来源,即Onsager的互惠关系,kubo kubo cormula和andpy式的公式和厌食症。在较高的流体动力学秩序下,我们引入了更通用的n阶“对称”仪表,我们表明,这意味着高阶流体动力学描述的有效性。

Hydrodynamics is a powerful emergent theory for the large-scale behaviours in many-body systems, quantum or classical. It is a gradient series expansion, where different orders of spatial derivatives provide an effective description on different length scales. We here report the first general derivation of third-order, or "dispersive", terms in the hydrodynamic expansion. We obtain fully general Kubo-like expressions for the associated hydrodynamic coefficients, and we determine their expressions in quantum integrable models, introducing in this way purely quantum higher-order terms into generalised hydrodynamics. We emphasise the importance of hydrodynamic gauge fixing at diffusive order, where we claim that it is parity-time-reversal, and not time-reversal, invariance that is at the source of Einstein's relation, Onsager's reciprocal relations, the Kubo formula and entropy production. At higher hydrodynamic orders we introduce a more general, n-th order "symmetric" gauge, which we show implies the validity of the higher-order hydrodynamic description.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源