论文标题

在任意字段上,顶点操作员代数的内态特性

Endomorphism property of vertex operator algebras over arbitrary fields

论文作者

Yang, Chao, Liu, Jianqi

论文摘要

在本文中,我们在任意字段$ \ mathbb {f} $上研究了顶点操作员代数的内态属性,并使用$ \ text {char}(\ mathbb {f})\ neq 2 $。让$ v $是超过$ \ mathbb {f} $的有限生成的顶点操作员代数,而$ m $是一种不可减至的可允许$ v $ -module。我们证明,$ \ text {end} _v(m)$中的每个元素都是$ \ mathbb {f} $的代数,而$ \ text {end} _v(m)$也是有限的。作为一个应用程序,我们证明了Schur在任意代数封闭的字段上有限有限生成的顶点操作员代数的引理,并且我们对$ V $ - 模块的绝对不可约性进行了测试。

In this paper, we study the endomorphism properties of vertex operator algebras over an arbitrary field $\mathbb{F}$, with $\text{Char}(\mathbb{F}) \neq 2$. Let $V$ be a strongly finitely generated vertex operator algebra over $\mathbb{F}$, and $M$ be an irreducible admissible $V$-module. We prove that every element in $\text{End}_V(M)$ is algebraic over $\mathbb{F}$ and that $\text{End}_V(M)$ is also finite-dimensional. As an application, we prove Schur's lemma for strongly finitely generated vertex operator algebras over arbitrary algebraically closed fields, and we give a test for absolute irreducibility of $V$-modules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源