论文标题

由惠斯勒模式波驱动的电子沉淀的时间尺度

Temporal Scales of Electron Precipitation Driven by Whistler-Mode Waves

论文作者

Zhang, Xiao-Jia, Angelopoulos, Vassilis, Artemyev, Anton, Mourenas, Didier, Agapitov, Oleksiy, Tsai, Ethan, Wilkins, Colin

论文摘要

惠斯勒模式波的电子谐振散射是负责电子沉淀到地球大气的最重要机制之一。我们研究了这种降水的时间和空间尺度,并通过两个低空elfin cubesats的测量值进行了测量。我们比较了同一L壳在同一L壳中的能量电子沉淀的变化,但在两个Elfin卫星的连续数据收集轨道轨道上进行了比较。在最小的卫星间分离处看到的变化可能与Whistler-Mode合唱元素或合唱波数据包的尺度有关(时间为0.1-1 s,在赤道的空间中为100 km)。中间卫星间分离的降水L壳轮廓之间的变化可能与惠斯勒模式波动功率调制通过超低频率(ULF)波,即与波源区域(从几秒钟到几秒钟到几秒钟到几分钟,时间到几分钟到几分钟,在空间中的空间为1000公里)。在这两种类型的变化中,连续的穿越与彼此非常相似的降水L壳轮廓相关。因此,在这些尺度上的空间和时间变化不会改变外部辐射带的净电子损失。在最大的卫星间分离范围内的变化,几分钟到10分钟以上,可能与受对流影响的中尺度赤道血浆结构有关(在几分钟到数十分钟的时间变化和[1000,10000] km的空间尺度上)。后一种变化会导致降水L壳轮廓的明显变化,并可以显着改变连续轨道期间的净电子损失。

Electron resonant scattering by whistler-mode waves is one of the most important mechanisms responsible for electron precipitation to the Earth's atmosphere. We investigate temporal and spatial scales of such precipitation with measurements from the two low-altitude ELFIN CubeSats. We compare the variations in energetic electron precipitation at the same L-shells but on successive data collection orbit tracks by the two ELFIN satellites. Variations seen at the smallest inter-satellite separations are likely associated with whistler-mode chorus elements or with the scale of chorus wave packets (0.1 - 1 s in time and 100 km in space at the equator). Variations between precipitation L-shell profiles at intermediate inter-satellite separations are likely associated with whistler-mode wave power modulations by ultra-low frequency (ULF) waves, i.e., with the wave source region (from a few to tens of seconds to a few minutes in time and 1000km in space at the equator). During these two types of variations, consecutive crossings are associated with precipitation L-shell profiles very similar to each other. Therefore the spatial and temporal variations at those scales do not change the net electron loss from the outer radiation belt. Variations at the largest range of inter-satellite separations, several minutes to more than 10 min, are likely associated with mesoscale equatorial plasma structures that are affected by convection (at minutes to tens of minutes temporal variations and [1000,10000]km spatial scales). The latter type of variations results in appreciable changes in the precipitation L-shell profiles and can significantly modify the net electron losses during successive tracks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源