论文标题

降低任务驱动的混合模型的灵巧操作

Task-Driven Hybrid Model Reduction for Dexterous Manipulation

论文作者

Jin, Wanxin, Posa, Michael

论文摘要

在接触良好的任务中,例如灵巧的操纵,制作和破坏接触的混合性质为模型表示和控制带来了挑战。例如,选择和测序接触位置进行手机操纵(其中有数千种潜在的杂种模式)通常是不可拖动的。在本文中,我们受到观察的启发,即完成许多任务实际上需要更少的模式。在我们先前的工作学习混合模型(表示为线性互补系统)的基础上,我们找到了一个减少的混合模型,仅需要有限的与任务相关的模式。这种简化的表示,结合模型预测控制,可以实现实时控制,但足以实现高性能。我们首先在合成混合系统上展示了所提出的方法,从而减少了多个数量级的模式计数,同时达到了少于5%的任务绩效损失。我们还将提出的方法应用于操纵以前未知物体的三指机器人手。在没有先验知识的情况下,我们只需收集几千个环境样本即可在在线学习的几分钟内实现最新的闭环表现。

In contact-rich tasks, like dexterous manipulation, the hybrid nature of making and breaking contact creates challenges for model representation and control. For example, choosing and sequencing contact locations for in-hand manipulation, where there are thousands of potential hybrid modes, is not generally tractable. In this paper, we are inspired by the observation that far fewer modes are actually necessary to accomplish many tasks. Building on our prior work learning hybrid models, represented as linear complementarity systems, we find a reduced-order hybrid model requiring only a limited number of task-relevant modes. This simplified representation, in combination with model predictive control, enables real-time control yet is sufficient for achieving high performance. We demonstrate the proposed method first on synthetic hybrid systems, reducing the mode count by multiple orders of magnitude while achieving task performance loss of less than 5%. We also apply the proposed method to a three-fingered robotic hand manipulating a previously unknown object. With no prior knowledge, we achieve state-of-the-art closed-loop performance within a few minutes of online learning, by collecting only a few thousand environment samples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源