论文标题

使用Halo扰动理论模型来自Boss Galaxy功率谱的RSD测量

RSD measurements from BOSS galaxy power spectrum using the halo perturbation theory model

论文作者

Yu, Byeonghee, Seljak, Uros, Li, Yin, Singh, Sukhdeep

论文摘要

我们从SDSS-III BOSS DR12星系的功率谱多物的宇宙学分析中提出了结构约束的增长。我们使用Hand等人的星系功率谱模型。 (2017年),将星系分解为光环质量箱,每种星系均使用光环偏见与光晕质量之间的关系分别建模。该模型结合了欧拉扰动理论和对$ n $ body仿真校准的光晕模型,以建模光环群集。在这项工作中,我们还通过将分析断开的部分与经验连接的部分结合在一起来生成协方差矩阵:我们通过选择一些主要组件来平滑连接的组件并表明它与模拟协调达到了良好的一致性。我们的分析与最近的分析不同,因为我们限制了单个参数$fσ_8$将其他所有内容固定到Planck+Bao之前,从而减少了先前的体积和不隔材料的影响。我们在$fσ_8$:$fσ_8(z {\ mathrm {eff}}} = 0.38)= 0.489 \ pm 0.038 $和$fσ_8(z _ {z _ {\ mathrm {eff}} = 0.61)= 0.455 \ pm pm 0.028 $ { 0.2 \ h $ mpc $^{ - 1} $,总幅度误差为5%,并且在普朗克振幅的良好同意(0.3 sigma)。我们讨论了宇宙学参数估计对缩放削减,协方差矩阵的选择的敏感性,以及六边形$ p_4(k)$的敏感性。我们表明,使用$ k _ {\ mathrm {max}} = 0.4 \ h $ mpc $^{ - 1} $,约束大大提高到总3.2%的振幅错误,但是有一些在Mu​​ltidark-Patchy Mocks上模型误差的证据。选择$ k _ {\ mathrm {max}} $一致而可靠地仍然是RSD分析方法的主要挑战。

We present growth of structure constraints from the cosmological analysis of the power spectrum multipoles of SDSS-III BOSS DR12 galaxies. We use the galaxy power spectrum model of Hand et al. (2017), which decomposes the galaxies into halo mass bins, each of which is modeled separately using the relations between halo biases and halo mass. The model combines Eulerian perturbation theory and halo model calibrated on $N$-body simulations to model the halo clustering. In this work, we also generate the covariance matrix by combining the analytic disconnected part with the empirical connected part: we smooth the connected component by selecting a few principal components and show that it achieves good agreement with the mock covariance. Our analysis differs from recent analyses in that we constrain a single parameter $fσ_8$ fixing everything else to Planck+BAO prior, thereby reducing the effects of prior volume and mismodeling. We find tight constraints on $fσ_8$: $fσ_8(z_{\mathrm{eff}}=0.38)=0.489 \pm 0.038$ and $fσ_8(z_{\mathrm{eff}}=0.61)=0.455 \pm 0.028$ at $k_{\mathrm{max}} = 0.2\ h$Mpc$^{-1}$, with an overall amplitude error of 5%, and in good agreement (within 0.3 sigma) of Planck amplitude. We discuss the sensitivity of cosmological parameter estimation to the choice of scale cuts, covariance matrix, and the inclusion of hexadecapole $P_4(k)$. We show that with $k_{\mathrm{max}} = 0.4\ h$Mpc$^{-1}$ the constraints improve considerably to an overall 3.2% amplitude error, but there is some evidence of model misspecification on MultiDark-PATCHY mocks. Choosing $k_{\mathrm{max}}$ consistently and reliably remains the main challenge of RSD analysis methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源