论文标题
在子界空间和sublinear查询时间中缝制索引索引
Gapped String Indexing in Subquadratic Space and Sublinear Query Time
论文作者
论文摘要
在间隙的字符串索引中,目标是压实表示长度$ n $的字符串$ s $,以便在由两个字符串$ p_1 $和$ p_2 $组成的任何查询中,称为模式,以及一个整数间隔$ [α,β] $,称为gaap范围,我们可以很快找到$ p_1 $ $ p_2 $ p_ $ s $ s $ s $ s $ s $ s $ s $ s。间隙弦索引是计算生物学和文本挖掘中的一个核心问题,因此获得了重要的研究兴趣,包括参数化和启发式方法。尽管有这种兴趣,但最著名的时间空间折衷的缝制字符串索引是直接$ o(n)$ space和$ o(n + occ)$查询时间或$ω(n^2)$ space和$ \ tilde {o}(| p_1 | p_1 | + | + | + | + | p_2 | + occ)$ QUERY时间。 我们突破了这个障碍,从多项式下次级空间和多项式sublinear查询时间获得了第一个有趣的权衡。特别是,我们表明,对于每$ 0 \leqΔ\ leq 1 $,都有一个数据结构,用于与$ \ tilde {o} {o}(n^{2-Δ/3})$或$ \ tilde {o}(n^{o}(n^{2-Δ/3})(n^{o \ tilde {o}) n^δ\ cdot(OCC+1))$查询时间,其中$ occ $是报告发生的数量。 作为获得我们主要结果的新工具,我们介绍了转移的集合问题。我们表明,此问题等效于3sum(3sum索引)的索引变体。通过一系列减少,我们获得了缝制字符串索引问题的解决方案。此外,我们增强了我们的数据结构,以决定转移的集合交叉点,以便我们可以支持问题的报告变体。通过获得的3sum索引的等效性,我们为3sum索引的报告变体提供了新的改进的数据结构,并且我们展示了这如何改进最先进的解决方案,以使任何常数大小$σ> 5 $ 5 $ 5 $ 5的字母混乱索引。
In Gapped String Indexing, the goal is to compactly represent a string $S$ of length $n$ such that for any query consisting of two strings $P_1$ and $P_2$, called patterns, and an integer interval $[α, β]$, called gap range, we can quickly find occurrences of $P_1$ and $P_2$ in $S$ with distance in $[α, β]$. Gapped String Indexing is a central problem in computational biology and text mining and has thus received significant research interest, including parameterized and heuristic approaches. Despite this interest, the best-known time-space trade-offs for Gapped String Indexing are the straightforward $O(n)$ space and $O(n+occ)$ query time or $Ω(n^2)$ space and $\tilde{O}(|P_1| + |P_2| + occ)$ query time. We break through this barrier obtaining the first interesting trade-offs with polynomially subquadratic space and polynomially sublinear query time. In particular, we show that, for every $0\leq δ\leq 1$, there is a data structure for Gapped String Indexing with either $\tilde{O}(n^{2-δ/3})$ or $\tilde{O}(n^{3-2δ})$ space and $\tilde{O}(|P_1| + |P_2| + n^δ\cdot (occ+1))$ query time, where $occ$ is the number of reported occurrences. As a new tool towards obtaining our main result, we introduce the Shifted Set Intersection problem. We show that this problem is equivalent to the indexing variant of 3SUM (3SUM Indexing). Via a series of reductions, we obtain a solution to the Gapped String Indexing problem. Furthermore, we enhance our data structure for deciding Shifted Set Intersection, so that we can support the reporting variant of the problem. Via the obtained equivalence to 3SUM Indexing, we thus give new improved data structures for the reporting variant of 3SUM Indexing, and we show how this improves upon the state-of-the-art solution for Jumbled Indexing for any alphabet of constant size $σ>5$.