论文标题

边缘图形的抗刺激标记的算法方法

An Algorithmic Approach to Antimagic Labeling of Edge Corona Graphs

论文作者

Nivedha, D., Yamini, S. Devi

论文摘要

图$ g $的抗原标签是边缘集合$ e(g)$和$ \ lbrace 1,2,...,| e(g)| \ rbrace $之间的$ 1-1 $对应关系,其中边缘标签的总和与不同的角度相同。通过将$ g $的一份副本与$ | e(g)| $ o(g)| $ i^{th} $ g $相邻的$ i^$ g $的末端顶点与$ i^$ i^$ i^$ i^$ i^$ i^$ i^$ i^$ i^$ i^$ i^$ i^$ i^$ i^$ i^$ i^$ i^$ i^$ i^$ i^$ i^$ i^$ i^$ i^$ i^$ i^$ i^$ i^$,在本文中,我们提供了一种算法来证明以下图是一个反刺激标签: $ - $ $ n $ -barbell图$ b_n $,$ n \ geq3 $ $ - $ - $ edge Corona of Bistar Graph $ b_ {x,n} $和$ k $ - regular Graph $ h $由$ b_ {x,n} \ diamond H $,$ x,n \ geq 2 $ $ - $ $ ged Corona of Cycle $ C_M $和$ C_N $由$ C_M \ Diamond C_n $,$ M,N \ GEQ3 $表示

An antimagic labeling of a graph $G$ is a $1-1$ correspondence between the edge set $E(G)$ and $\lbrace 1,2,...,|E(G)|\rbrace$ in which the sum of the labels of edges incident to the distinct vertices are different. The edge corona of any two graphs $G$ and $H$, (denoted by $G$ $\diamond$ $H$) is obtained by joining one copy of $G$ with $|E(G)|$ copies of H such that the end vertices of $i^{th}$ edge of $G$ is adjacent to every vertex in the $i^{th}$ copy of $H$. In this paper, we provide an algorithm to prove that the following graphs admit an antimagic labeling: $-$ $n$-barbell graph $B_n$, $n\geq3$ $-$ edge corona of a bistar graph $B_{x,n}$ and a $k$-regular graph $H$ denoted by $B_{x,n}\diamond H$, $x,n\geq 2$ $-$ edge corona of a cycle $C_m$ and $C_n$ denoted by $C_m \diamond C_n$, $m,n\geq3$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源