论文标题
驯服的几何数量定量最小分支问题
The Tamely Ramified Geometric Quantitative Minimal Ramification Problem
论文作者
论文摘要
我们证明了波士顿 - 马克蛋白的庞大的田野版本,即用给定的galois组计算有理函数字段的galois扩展,并且可能的最少数量的刺激素数。我们的证明涉及对机架(直接产品)的结构组进行研究。
We prove a large finite field version of the Boston--Markin conjecture on counting Galois extensions of the rational function field with a given Galois group and the smallest possible number of ramified primes. Our proof involves a study of structure groups of (direct products of) racks.