论文标题

嘈杂量子电路模拟的近似算法

Approximation Algorithm for Noisy Quantum Circuit Simulation

论文作者

Huang, Mingyu, Guan, Ji, Fang, Wang, Ying, Mingsheng

论文摘要

模拟嘈杂的量子电路对于在当前NISQ(嘈杂的中间尺度量子)时代设计和验证量子算法至关重要,在当前NISQ(嘈杂的中间尺度量子)时代,量子噪声不可避免。但是,由于量子状态爆炸问题(状态空间的维度在量子数中的指数是指数)和噪声的复杂(非单身)表示,因此它比经典的效率要高得多。因此,只能很好地模拟大约50吨的嘈杂电路。本文介绍了一种新颖的近似算法,用于模拟嘈杂的量子电路时,当嘈杂的有效性无关紧要,无法提高可以模拟的电路的可扩展性。该算法基于用于嘈杂模拟的新张量网络图,并使用奇异值分解来近似图中量子噪声的张量。张量网络图的收缩是在Google的Tensornetwork上实现的。通过在一系列具有现实超导噪声模型的实用量子电路上实验,可以证明算法的有效性和效用。结果,我们的算法可以大致模拟带有多达225 QUIT和20个噪声(约1.8小时内)的量子电路。特别是,我们的方法对普遍使用的近似(采样)算法 - 量子轨迹方法提供了加速。此外,当噪声速率足够小时,我们的方法可以显着减少量子轨迹方法中的样品数量。

Simulating noisy quantum circuits is vital in designing and verifying quantum algorithms in the current NISQ (Noisy Intermediate-Scale Quantum) era, where quantum noise is unavoidable. However, it is much more inefficient than the classical counterpart because of the quantum state explosion problem (the dimension of state space is exponential in the number of qubits) and the complex (non-unitary) representation of noises. Consequently, only noisy circuits with up to about 50 qubits can be simulated approximately well. This paper introduces a novel approximation algorithm for simulating noisy quantum circuits when the noisy effectiveness is insignificant to improve the scalability of the circuits that can be simulated. The algorithm is based on a new tensor network diagram for the noisy simulation and uses the singular value decomposition to approximate the tensors of quantum noises in the diagram. The contraction of the tensor network diagram is implemented on Google's TensorNetwork. The effectiveness and utility of the algorithm are demonstrated by experimenting on a series of practical quantum circuits with realistic superconducting noise models. As a result, our algorithm can approximately simulate quantum circuits with up to 225 qubits and 20 noises (within about 1.8 hours). In particular, our method offers a speedup over the commonly-used approximation (sampling) algorithm -- quantum trajectories method. Furthermore, our approach can significantly reduce the number of samples in the quantum trajectories method when the noise rate is small enough.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源