论文标题
固态量子计量学的谐振弱价增强
Resonant weak-value enhancement for solid-state quantum metrology
论文作者
论文摘要
采用弱价值的量子计量学可以通过超高灵敏度来潜在地影响参数估计,并且通常在量子光学设置中进行了探索。认识到固态中敏感参数估计的重要性,我们提出了一个自旋设备平台来实现这一点。该设置通过利用谐振隧道增强的磁力读数来估计局部Zeeman分裂非常弱。我们确定,这种范式提供了几乎最佳的性能,而量子Fisher信息的增强大约为$ 10^4 $ $ $倍,而单个高速度推荐屏障的倍数。在固态通常会遇到的脱角色效应的情况下,获得的信号还具有高灵敏度。这些结果提出了确定的可能性,可以利用与潜在应用的固态量子计量学对固态量子计量学的固有灵敏度,特别是在敏感的诱导Zeeman在量子材料异质结构中的敏感检测。
Quantum metrology that employs weak-values can potentially effectuate parameter estimation with an ultra-high sensitivity and has been typically explored across quantum optics setups. Recognizing the importance of sensitive parameter estimation in the solid-state, we propose a spintronic device platform to realize this. The setup estimates a very weak localized Zeeman splitting by exploiting a resonant tunneling enhanced magnetoresistance readout. We establish that this paradigm offers nearly optimal performance with a quantum Fisher information enhancement of about $10^4$ times that of single high-transmissivity barriers. The obtained signal also offers a high sensitivity in the presence of dephasing effects typically encountered in the solid state. These results put forth definitive possibilities in harnessing the inherent sensitivity of resonant tunneling for solid-state quantum metrology with potential applications, especially, in the sensitive detection of small induced Zeeman effects in quantum material heterostructures.