论文标题

扭曲积极性,L空间结和一致性

Twist positivity, L-space knots, and concordance

论文作者

Krishna, Siddhi, Morton, Hugh

论文摘要

许多经过良好研究的结都可以实现为正编织结的正面辫子结,其中编织单词包含正面的全部曲折。我们说这样的结是正面的。一些重要的结族是扭曲的阳性,包括圆环结,1架辫子,代数结和洛伦兹结。我们证明,如果打结是扭曲的,则辫子指数是其亚历山大多项式中的第三个指数。我们提供了一些结果的应用。在观察到最著名的L空间结的示例是扭曲的正面之后,我们证明:如果$ k $是一个扭曲的l-space结,则$ k $的辫子索引和桥梁指数是$ k $的同意。这使我们能够提供贝克重新解释切片 - 里宾猜想的证据:每个平滑的一致性类最多都包含一个纤维,强烈的准阳性结。特别是,我们提供了一个无限的正编织结家族的第一个例子,它们在一致性上是不同的,在此,作为$ g \ to \ to \ infty $,G属G属的双曲结的数量变得任意大。最后,我们收集了一些新猜想的证据,包括以下内容:编织和桥梁指数同意任何L空间结。

Many well studied knots can be realized as positive braid knots where the braid word contains a positive full twist; we say that such knots are twist positive. Some important families of knots are twist positive, including torus knots, 1-bridge braids, algebraic knots, and Lorenz knots. We prove that if a knot is twist positive, the braid index appears as the third exponent in its Alexander polynomial. We provide a few applications of this result. After observing that most known examples of L-space knots are twist positive, we prove: if $K$ is a twist positive L-space knot, the braid index and bridge index of $K$ agree. This allows us to provide evidence for Baker's reinterpretation of the slice-ribbon conjecture: that every smooth concordance class contains at most one fibered, strongly quasipositive knot. In particular, we provide the first example of an infinite family of positive braid knots which are distinct in concordance, and where, as $g \to \infty$, the number of hyperbolic knots of genus g gets arbitrarily large. Finally, we collect some evidence for a few new conjectures, including the following: the braid and bridge indices agree for any L-space knot.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源