论文标题

在路由限制下,非月底下调最大化

Nonmonontone submodular maximization under routing constraints

论文作者

Zhang, Haotian, Li, Rao, Wu, Zewei, Sun, Guodong

论文摘要

在机器学习和大数据中,基于设定,熵,多样性,影响力,特征选择等的优化目标通常被建模为suppodular函数。即使在没有约束的情况下,也通常是NP- hard的(函数)最大化。最近,已经成功研究了目标函数是单调或约束可以计算的设置的成功研究。然而,尚未得到充分理解,最大程度地利用具有复杂限制的非单调性下一个功能。在本文中,我们考虑了非单身酮的非单调最大化,并具有成本预算或可行性限制(尤其是从路线计划),通常是NP的评估。这样的问题对于机器学习,大数据和机器人技术很常见。这个问题是NP硬化,最重要的是,其约束评估也是NP-HARD,这增加了额外的复杂性。到目前为止,很少有研究致力于提出有效的解决方案,这使得目前尚不清楚这个问题。在本文中,我们首先提出了一种迭代的贪婪算法,该算法产生近似解决方案。然后,我们开发显示我们的算法的证明机制是双标准近似算法:它可以实现与最佳算法的恒定因子近似值,同时保持预算紧密界限。我们还探讨了实现时间复杂性和预算之间取舍的实际考虑。最后,我们在两个具体示例上进行了数字实验,并在实际环境中显示了设计的功效。

In machine learning and big data, the optimization objectives based on set-cover, entropy, diversity, influence, feature selection, etc. are commonly modeled as submodular functions. Submodular (function) maximization is generally NP-hard, even in the absence of constraints. Recently, submodular maximization has been successfully investigated for the settings where the objective function is monotone or the constraint is computation-tractable. However, maximizing nonmonotone submodular function with complex constraints is not yet well-understood. In this paper, we consider the nonmonotone submodular maximization with a cost budget or feasibility constraint (especially from route planning) that is generally NP-hard to evaluate. Such a problem is common for machine learning, big data, and robotics. This problem is NP-hard, and on top of that, its constraint evaluation is also NP-hard, which adds an additional layer of complexity. So far, few studies have been devoted to proposing effective solutions, making this problem currently unclear. In this paper, we first propose an iterated greedy algorithm, which yields an approximation solution. Then we develop the proof machinery that shows our algorithm is a bi-criterion approximation algorithm: it can achieve a constant-factor approximation to the optimal algorithm, while keeping the over-budget tightly bounded. We also explore practical considerations of achieving a trade-off between time complexity and over-budget. Finally, we conduct numeric experiments on two concrete examples, and show our design's efficacy in practical settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源