论文标题

全球陆地储水数据集版本2(GLWS2.0)通过将恩典和宽限期数据吸收到全球水文模型中得出

The global land water storage data set release 2 (GLWS2.0) derived via assimilating GRACE and GRACE-FO data into a global hydrological model

论文作者

Gerdener, Helena, Kusche, Jürgen, Schulze, Kerstin, Döll, Petra, Klos, Anna

论文摘要

我们描述了新的全球土地储水数据集GLWS2.0,该数据集包含全球土地上的总储水异常(TWSA),除了格陵兰和南极洲外,空间分辨率为0.5°,涵盖了2003年至2019年的时间范围,没有空白,并且包括不确定性定量。 GLWS2.0是通过通过集合卡尔曼过滤器吸收了每月的宽限期/-FO质量变化图,并考虑了数据和模型的不确定性。然后在几个水文存储变量上积累了GLWS2.0中的TWSA。在本文中,我们描述了进入GLWS2.0的方法和数据集,它如何与GRACE/-FO数据进行比较,以表示TWSA趋势,季节性信号和极端,以及与GNSS衍生的垂直负载及其与NASA CANCEMAN CANCEMENT LAND SURECTION LAND SURECTS MODER MODER MODE MOLD模型数据的验证(通过比较)。我们发现,在超过1000个电台的全球平均水平中,GLWS2.0比GRACE/-FO更好地适合GNSS在短期,季节性和长期颞频带时对垂直负载的观察。尽管存在一些差异,但总体GLWS2.0就TWSA趋势以及年度幅度和阶段而言,与CLSM-DA非常吻合。

We describe the new global land water storage data set GLWS2.0, which contains total water storage anomalies (TWSA) over the global land except for Greenland and Antarctica with a spatial resolution of 0.5°, covering the time frame 2003 to 2019 without gaps, and including uncertainty quantification. GLWS2.0 was derived by assimilating monthly GRACE/-FO mass change maps into the WaterGAP global hydrology model via the Ensemble Kalman filter, taking data and model uncertainty into account. TWSA in GLWS2.0 is then accumulated over several hydrological storage variables. In this article, we describe the methods and data sets that went into GLWS2.0, how it compares to GRACE/-FO data in terms of representing TWSA trends, seasonal signals, and extremes, as well as its validation via comparing to GNSS-derived vertical loading and its comparison with the NASA Catchment Land Surface Model GRACE Data Assimilation (CLSM-DA). We find that, in the global average over more than 1000 stations, GLWS2.0 fits better than GRACE/-FO to GNSS observations of vertical loading at short-term, seasonal, and long-term temporal bands. While some differences exist, overall GLWS2.0 agrees quite well with CLSM-DA in terms of TWSA trends and annual amplitudes and phases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源