论文标题
监视有限轨迹上的算术时间特性
Monitoring Arithmetic Temporal Properties on Finite Traces
论文作者
论文摘要
我们研究了对未知动态系统产生的有限痕迹的线性时间算术特性的监测。监测状态是通过立即考虑到目前为止所看到的痕量前缀以及其所有可能的有限长度的未来连续性来确定的。这至少使监视与满意度和有效性一样困难。迹线由固定变量对数值的固定组合的有限序列组成。属性是在我们称为altlf的逻辑中指定的,将LTLF(有限轨迹上的LTL)与线性算术约束结合在一起,这些约束可能带有lookahead,即可以在迹线的多个速度上比较变量。尽管这种设置的监视问题一般是不可决定的,但我们显示了(a)属性的无lookahead的属性,以及(b)具有lookahead的属性,可满足有限摘要的抽象,语义条件,此前在模型检查的背景下进行了研究。然后,我们挑出确保有限摘要的混凝土,实际上相关的约束类别。原型实施见证了可行性。
We study monitoring of linear-time arithmetic properties against finite traces generated by an unknown dynamic system. The monitoring state is determined by considering at once the trace prefix seen so far, and all its possible finite-length, future continuations. This makes monitoring at least as hard as satisfiability and validity. Traces consist of finite sequences of assignments of a fixed set of variables to numerical values. Properties are specified in a logic we call ALTLf, combining LTLf (LTL on finite traces) with linear arithmetic constraints that may carry lookahead, i.e., variables may be compared over multiple instants of the trace. While the monitoring problem for this setting is undecidable in general, we show decidability for (a) properties without lookahead, and (b) properties with lookahead that satisfy the abstract, semantic condition of finite summary, studied before in the context of model checking. We then single out concrete, practically relevant classes of constraints guaranteeing finite summary. Feasibility is witnessed by a prototype implementation.