论文标题
非主要T偶对,广义的复杂几何形状和爆炸
Non-principal T-duality, generalized complex geometry and blow-ups
论文作者
论文摘要
我们将T偶偶(T二)的概念扩展到具有非主要圆环动作的歧管。圆环动作的奇异性由某个谎言代数(称为椭圆形切线束)控制。使用此谎言代数,我们解释了如何通过T-偶尔运输某些不变的广义复合结构。在此过程中,我们使用椭圆形切线束来定义这些圆环动作的连接,并为Haefliger-Salem对此类动作的分类提供了新的见解。
We extend the notion of T-duality to manifolds endowed with non-principal torus actions. The singularities of the torus action are controlled by a certain Lie algebroid, called the elliptic tangent bundle. Using this Lie algebroid, we explain how certain invariant generalized complex structures can be transported via T-duality. Along the way, we use the elliptic tangent bundle to define connections for these torus action, and give new insight to the classification of such actions by Haefliger-Salem.