论文标题

通过网络批判化和超参数搜索优化解释

Optimizing Explanations by Network Canonization and Hyperparameter Search

论文作者

Pahde, Frederik, Yolcu, Galip Ümit, Binder, Alexander, Samek, Wojciech, Lapuschkin, Sebastian

论文摘要

可解释的AI(XAI)正在逐渐成为许多AI应用的关键组件。但是,基于规则和修改的反向传播XAI方法在应用于包括创新层构建块在内的现代模型体系结构时,通常会面临挑战,这是由两个原因引起的。首先,基于规则的XAI方法的高灵活性导致许多潜在的参数化。其次,许多XAI方法破坏了实现不变性公理,因为它们在某些模型组件(例如batchnorm层)中遇到了困难。后者可以用模型批量化来解决,这是重新结构模型以无视有问题的组件而无需更改基础函数的过程。对于简单体系结构(例如VGG,Resnet)而言,模型典写很简单,但对于更复杂且高度相互联系的模型(例如Densenet)可能会具有挑战性。此外,只有几乎没有可量化的证据表明模型典礼对XAI有益。在这项工作中,我们建议针对适用于流行的深度神经网络体系结构的当前相关模型块,包括VGG,Resnet,EdgitionNet,Densenets以及关系网络。我们进一步提出了一个XAI评估框架,我们对Pascal-VOC和ILSVRC2017数据集的图像分类任务中的各种XAI方法进行量化并比较了SOF模型的效果模型canonization,以及使用CLEVR-XAI的视觉问题。此外,在解决上述以前的问题时,我们演示了如何应用评估框架来执行XAI方法的超参数搜索以优化说明的质量。

Explainable AI (XAI) is slowly becoming a key component for many AI applications. Rule-based and modified backpropagation XAI approaches however often face challenges when being applied to modern model architectures including innovative layer building blocks, which is caused by two reasons. Firstly, the high flexibility of rule-based XAI methods leads to numerous potential parameterizations. Secondly, many XAI methods break the implementation-invariance axiom because they struggle with certain model components, e.g., BatchNorm layers. The latter can be addressed with model canonization, which is the process of re-structuring the model to disregard problematic components without changing the underlying function. While model canonization is straightforward for simple architectures (e.g., VGG, ResNet), it can be challenging for more complex and highly interconnected models (e.g., DenseNet). Moreover, there is only little quantifiable evidence that model canonization is beneficial for XAI. In this work, we propose canonizations for currently relevant model blocks applicable to popular deep neural network architectures,including VGG, ResNet, EfficientNet, DenseNets, as well as Relation Networks. We further suggest a XAI evaluation framework with which we quantify and compare the effect sof model canonization for various XAI methods in image classification tasks on the Pascal-VOC and ILSVRC2017 datasets, as well as for Visual Question Answering using CLEVR-XAI. Moreover, addressing the former issue outlined above, we demonstrate how our evaluation framework can be applied to perform hyperparameter search for XAI methods to optimize the quality of explanations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源