论文标题
简单点计数的集成距离采样模型
Integrated distance sampling models for simple point counts
论文作者
论文摘要
点计数(PC)被广泛用于生物多样性调查中,但是尽管有许多优势,但简单的PC却遇到了几个问题:可检测性,因此丰度是未知的;可检测性的系统时空变化会产生偏见的推论,未知的调查区域可防止正式的密度估计并扩大到景观水平。我们介绍了集成距离采样(IDS)模型,将距离采样(DS)与简单的PC或检测/非检测/非检测(DND)数据相结合,并利用强度并减轻每种数据类型的弱点。 IDS模型的关键是简单的PC和DND数据作为潜在DS调查的聚合,这些调查观察到相同的基础密度过程。这使得所有数据类型都可以估计单独的检测功能以及不同的协变量效应。来自重复或驱动时间调查的其他信息,或可变的调查持续时间,可以单独估计可检测性的可用性和可感知性成分。 IDS模型在数据集之间调和空间和时间不匹配,并解决了简单PC和DND数据的上述问题。为了适合IDS模型,我们在未标记的R软件包中提供JAGS代码和新的IDS()函数。现存的公民科学数据通常缺乏针对检测偏见的调整,但是IDS模型解决了这一缺点,因此大大扩展了这些数据的效用和覆盖范围。此外,它们可以在混合设计中进行正式的密度估计,从而有效地将距离采样与无距离,基于点的PC或DND调查相结合。我们认为,IDS模型在生态,管理和监测方面具有相当大的范围。
Point counts (PCs) are widely used in biodiversity surveys, but despite numerous advantages, simple PCs suffer from several problems: detectability, and therefore abundance, is unknown; systematic spatiotemporal variation in detectability produces biased inferences, and unknown survey area prevents formal density estimation and scaling-up to the landscape level. We introduce integrated distance sampling (IDS) models that combine distance sampling (DS) with simple PC or detection/nondetection (DND) data and capitalize on the strengths and mitigate the weaknesses of each data type. Key to IDS models is the view of simple PC and DND data as aggregations of latent DS surveys that observe the same underlying density process. This enables estimation of separate detection functions, along with distinct covariate effects, for all data types. Additional information from repeat or time-removal surveys, or variable survey duration, enables separate estimation of the availability and perceptibility components of detectability. IDS models reconcile spatial and temporal mismatches among data sets and solve the above-mentioned problems of simple PC and DND data. To fit IDS models, we provide JAGS code and the new IDS() function in the R package unmarked. Extant citizen-science data generally lack adjustments for detection biases, but IDS models address this shortcoming, thus greatly extending the utility and reach of these data. In addition, they enable formal density estimation in hybrid designs, which efficiently combine distance sampling with distance-free, point-based PC or DND surveys. We believe that IDS models have considerable scope in ecology, management, and monitoring.